CLIMATE MEETS POLLUTION: DUAL-MODEL MAPPING OF LIMESTONE SURFACE RECESSION ACROSS BIOGEOGRAPHICAL EUROPE Scan for Lipfert -Kucera Matrix Nusret Drešković¹, Edin Hrelja¹, Samir Đug¹, Saida Ibragić¹, Božidar Radulović², Snežana Radulović^{1,2}* ¹University of Sarajevo, Faculty of Science, Bosnia and Herzegovina ## ²University of Novi Sad, Faculty of Science, Serbia Increasingly exposed to the combined impacts of climate change and air pollution, limestone monuments are undergoing accelerated material degradation. This study applies a dual-model approach to quantify limestone surface recession at 15 heritage sites between 1992 and 2023, using two dose-response functions: Lipfert (focused on precipitation-driven acid dissolution) and Kucera (multi-pollutant based). Sites were selected to represent a broad spectrum of climatic conditions, pollutant exposure levels, and biogeographical zones across Europe, including continental, alpine, and Mediterranean regions, both urban and rural contexts. These include Sarajevo, Križevići, Kopošići, Blidinje, Ravanjska Vrata (BiH), Mramorje (RS), Split and Velika Cista (CRO), Žugića Bare (MNE), Mdina Rabat (MT), Hundskirche (AT), Unsleben and Kleinbardorf Jewish Cemeteries (DE), and Caen (FR). Harmonized environmental datasets (SO₂, NO_x, PM₁₀, temperature, and precipitation) reveal divergent model sensitivities: Lipfert estimates are higher in humid, high-rainfall zones (Žugića Bare), while Kucera better reflects pollutant-driven deterioration in urban contexts (Sarajevo, Mdina Rabat). These findings highlight site-specific degradation dynamics shaped by climate and air quality interactions. This evidence-based approach supports integrated risk mapping and the development of adaptive conservation policies at regional and European levels. Lipfert, 1989), used to determine the erosion index of carbonate materials in the Risk Map of Cultural Heritage at national level in Italy (Ministero per i Beni e le Attività Culturali, 1996). ## Lipfert (1989) L = 18.8 · R + 0.016 · [H+]· R + 0.18 (VdS [SO2]+VdN [HNO3]) L = surface recession per year (μ m year- 1); 18.8 =intercept term based on the solubility of CaCO3 in equilibrium with 330 ppm CO2 (μ m m- 1); R =precipitation (m year- 1); 0.016 =constant valid for precipitation pH in the range 3–5; [H+] = hydrogen ion concentration (μ mol l- 1) evaluated from rain yearly pH; 0.18 =conversion factor from (cm s- 1) (μ g m- 3) to μ m; VdS = deposition velocity of SO2 (cm s- 1); [SO2] = SO2 concentration (μ g m- 3); VdN = deposition velocity of HNO3 (cm s- 1) and [HNO3] = HNO3 concentration (μ g m- 3). R = surface recession per year (μm/year– 1), [SO2] = SO2 concentration (μm/m– 3), RH60 = is the measured relative humidity when RH N 60 otherwise 0, Rain = amount of rainfall (mm) and [H+] = H+ concentration (0.0006–0.13 mg l– 1), [HNO3] = HNO3 concentration (μm/m– 3), PM10 = particulate matter concentration (μg/m– 3). | | | STECCI
LOCATIONS | Kucera
(µm/year) | Lipfert
(µm/year) | Kucera
(µm/year) | Lipfert
(µm/year) | MAIN
FACTORS | |--|---|---------------------|---------------------|----------------------|--|--|---| | | Urban, High
Pollution (SO ₂ >
10 μg/m³, PM ₁₀ >
50 μg/m³) | Sarajevo (BIH) | 44.58 | 23.26 | 40-60+
(can
exceed 100
in extreme
cases) | N/A
(Lipfert
model does
not apply in
SO ₂ -rich
areas) | Acid rain, SO ₂
gas dissolution,
particulate
deposition | | | Moderate
Pollution (SO ₂
<10 μg/m³, PM ₁₀
>20 μg/m³) | Mdina Rabat (MT) | 37.66 | 16.75 | 20-40 | N/A | Particulate deposition | | | | Unsleben (DE) | 29.03 | 11.81 | | | | | | | Mramorje (RS) | 23.89 | 17.72 | | | | | | Moderate
Pollution, Low
Pollution (SO ₂ <
5 μg/m³, PM ₁₀ < | Caen (FR) | 18.11
17.72 | 12.07
27.76 | 5-20 (SO ₂ still contributes, but reduced | considering | Low SO ₂
contribution,
some acid rain,
traffic pollutants | | | 20 µg/m³)
Rural, Low | Split (CRO) | 11.12 | 21.10 | impact) | | Natural | | | Rainfall (<500
mm/year,
arid/semi-arid) | N/A | N/A | N/A | 1-5 | 1-3 | weathering
dominates, slow
dissolution | | | Rural, Moderate
Rain (500-1000
mm/year) | Kopošići (BIH) | 5.33 | 21.02 | 2-7 | 5-10 | Low air pollution, but precipitation | | | | Križevići (BIH) | 4.81 | 18.65 | | | increases
limestone
dissolution | | | | Velika Cista (CRO) | 5.05 | 25.77 | | | | | | Mountainous,
High Rainfall
(1000-2000
mm/year) | Hundskirche (AT) | 19.72 | 28.26 | 20-30 | 10-30 | Rainwater
dissolution
accelerates loss
even in clean air | | | Remote, Very
High Rainfall | <u> </u> | | | | 45.00 | Pure rainfall-
driven | CONCLUSION Lipfert & Kucera DRF The core part of this research presents the review of limestone dissolution rates (µm/year) under multiple environmental settings of STECCI sites, according to two DRF models, under the effect of pollution levels, rainfall, and geographical aspects. The findings show how, with considerable differences depending on location, air quality and precipitation form the weathering process of limestone. Funded by the European Union under Grant Agreement No. 101094822. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Research Executive Agency (REA). Neither the European Union nor the granting authority can be held responsible for them.